
Journal of Mathematical Chemistry 3(1989)357 -375 357 

M O M E N T S  A N D  C H A R A C T E R I S T I C  P O L Y N O M I A L S  O F  B I P A R T I T E  

HÜCKEL GRAPHS 

Y. JIANG and H. ZHANG 

Institute of  Theoretical Chemistry, Jilin University, Changchun, China 

Received 17 August 1988 
(in final form 21 November 1988) 
(received by the Publisher 20 September 1989) 

A b s t r a c t  

Moments (Uk) and coefficients of characteristic polynomials (a k) have been 
evaluated in terms of molecular fragments up to k = 12 for bipartite Hückel graphs. 
Based on combinatorial analysis, each coefficient can be derived as a combination 
of binomial factors mapping to the corresponding multi-component graphs. The 
general formula becomes lengthy as k increases, but can be considerably simplified 
for a homologous series. This has been illustrated by dealing with the cata-condensed 
benzenoid hydrocarbons as a corollary where a rather compact set of ak has been 
deduced. On combining the present result with Coulson's formula, one gains 
insight into the relative stability of isomers in relationship to the energy contribu- 
tion of fragments classified as stabilized and destabilized species. 

1. I n t r o d u c t i o n  

The evaluation of characteristic polynomials is currently carried out either 

by expanding the determinant defined or by directly computing the coefficients 

involved [ 1 - 1 4 ] .  Little has been published on the relationship between characteristic 

polynomials and molecular fragments, which seems fundamentally important for 

interpreting molecular behaviour in terms of local structures [15].  Recently, moment 

analysis has been used as a tool because moments connect with molecular fragments 

on the one hand, and with some graph invariants on the other hand [14,15].  The 

importance of moments and fragments in chemical graph theory is based on the 

fact that they can be used as variables for characterizing the local topology of  a 

graph [ 1 4 - 1 8 ] .  Topics related to acyclic hydrocarbons were always concentrated 

on file total electron energy and coefficients of  characteristic polynomials which 
have been extended to cyclic systems [15].  
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In this paper, moments (uk) and coefficients of characteristic polynomials 
(ak) are evaluated up to k = 12 for bipartite Hückel graphs. The general formulas 
expressed in temas of fragments become lengthy when k becomes large. However, 
if one confines oneself to a homologous series, the situation becomes more simplified 
because independent fragments are greatly diminished. As an illustration, moments 
and ak's of cata-condensed benzenoid hydrocarbons have been deduced and formulated 
in terms of graph variables, introduced by Balaban [18]. In combination with 
Coulson's formula, one obtains insight into the role played by various fragments 
which can be reasonably classified as stabilized and destabilized species. A qualitative 
scheme for interpreting the relative stability of cata-condensed benzenoid hydro- 
carbon isomers is proposed on the basis of comparing the energy contribution by 
counting fragments. 

2. M o m e n t s  and  mo lecu l a r  f r agmen t s  

Because t_here are no non-zero odd moments for alternants, we concentrate 
on even moments. Obviously, each moment for any molecule can be partitioned 
additively into acyclic and cyclic components (u;t and u")2l [15] " 

with 

: ' + " ( 1 )  U2l U2 l ld2l , 

ù;,: Z cg'io'j (2) 
G' 

u~, = Y ca"ra"l 2t L , ( 3 )  
G" 

where [G'] or [G"] represents the number of acyclic fragment G' or of cyclic frag- 
ment G" involved in the molecule. C~' (C~") enumerates the self-adjoint walks of 
length 21 spanned by G' (G"). Equation (2) has been discussed in detail [16], so we 
put emphasis on eq. (3) after briefly reviewing various acyclic fragments G' used in 
eq. (2). 

The acyclic fragments with l less than 6 are listed in fig. 1, where the symbol 
[ N ' - n , a , b  . . . . .  n - a -  b - . . . ]  signifies the topology of G' composed of N '  
points, N ' -  n represents the length of the main chain, and a, b , . . .  stands for the 
lengths of first, second, . . . ,  straight side chains, respectively. 

In order to formulate eq. (3) up to l = 6, sixty-five cyclic fragments are 
listed in fig. 2, where brackets are used for the same purpose to characterize G". 
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o o---o o--o--o o--o---o-.o ~ o--o--K)---o---o 
I , A  

[1] [21 [3] [4] [31] [5] 

[hl] [6] [51] [501] 

[~111 [71 [61] 

[601] [51 I] [5101] 

Fig. 1. Acyclic fragments for I ~< 6. 

The symbol [~,a ~, b t3 . . . .  ] signifies the topology of a mono-cyclic fragment in 
which an n-membered ring is linked to side chains a,b, . . .  at their sites a , [ 3 , . . ,  
respectively. As a rule, these site symbols a , (3 , . ,  are omitted in cases of shortest 
chains [1] and [2]. For double cyclic structures, the coupled bracket [-~,a ~, b ~ . . . .  
IN, c ~', d 6 , . .  ] is adopted if a common edge is shared by n- and m-membered rings 

simultaneously. On the other hand, the symbol [~, a ~, b ~ , . .  - ~ ,  c v, d 6 , . .  ] is used 
if the rings connect via another edge. The side chains a, b . . . .  and c ,d , . . ,  belonging 
to the n- and m-membered rings, respectively, are arranged in order with respect to 
the shared or connected edge. For multi-cyclic species, it is straightforward to 
generalize this symbology. 

With the specification of G" in fig. 2, equation (3) can be derived one by one 
after the coefficient C~" has been carried out. We list U~l , with l up to 6, in the 
following: 
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[~] [~'I ]  [2~2} [ [z i le} [4311 [~3 ?] 

{2[201 ] [~1111 {zI I~'1 ] {21-211 [~;4 ~ ] [2/'4 2 ] 

[•2111 [ 21011 [43 011 [33 I] [43 01] [21221 [4202] 

[/,I~141 [~I-2[011 [ 2I-zTI ] [ ~-I-~T] [61 tel] Ig21 

[ g l l ]  [gl01] [g10013 [g lg l  [g31 ] [632] [g211 

[g201] Ig2001 ] t61111 [g11011 [glOlO1] [ g i r l ]  [gll2I] 

t~;oll~J [g-~1 [i;Ig] [~1 [~1] [1~2] 

[~}1011 [glO01} [glO001] ['~14] I[01 [1-01} 

© (Y C~ C( 
[~111 

G 
[l '~l 

Fig. 2. Diagrams and symbols of cyclic fragments when l ~< 6. 
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" = 0  /'/2 

" = 8 [ ~ 1  U 4 

u~ = 4814] +121411 +1216] 

u~ = 26414-] +11214-1] +9616] +16142] + 1614-11] 
+ 1614-101] +48[414] + 16[gl] + 16181 

" = 132014] UlO + 840 [41 ] + 540 [6-] + 180 [4-21 + 220 [411 ] + 200 [4-101 ] 

+9001414] +180161] +16018] +201431] +401432] 
+201421] +2014--201] +2014-111] +60141Z/-1] +40[:g-4] 

+20[g2] +20[g11] +20[g101] +20[g1001] +60[glg] 

+ 201811 +20[]-61 

" = 612814] U12 +5508141] +2724161 +1448142] + 22321411] 
+ 1944[~101] + 10032[~1~] + 1344[~1] + 1508[g] 

+26414-3 ~ ] +576143:] +3121421] +28814201] 
+360[a111] +1512[,,141] +672[~-~] +264[g2] 

+312[g11] +288[g101] +288[g1001] + 1104[gla-] 

+264[gl] +240[]-6] + 2414-4 a ] +4814-42] +48[~(31)] 
+24[~3 ~ 1] +24[a-3~01] +48[a-321] +4814-3201] 

+2414-22] +2414-202] +2414-211] +24142101] 
+2414-1111] +7214-142] +72[41411] +72141J41] 
+72[411401] +408141414] +4814-41] +4814-401] 
+4814--1-4]  +24163 x] +481632] +241621] 
+2416201] +2416--2001] +2416111] +24161101] 
+241610101] +7216141] +7216114] + 72 [60114-] 
+721616] +4816-4]  +24182] +241811] +24181001] 
+24181001] +24[ä10001] +721814] +24[]Ö1] +24[]-2-]. (4) 
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3.  Coef f i c i en t s  o f  t he  cha rac te r i s t i c  p o l y n o m i a l  

For any bipartite graph, the characteristic polynomial is typically as follows: 

(5) PG(X) = x N + a2 x N - 2  + a4x  N - 4  + . . .  + a2tx N - 2 l  + . . .  + a N 

and the coefficient a k is related to moments that fulfill [14] • 

k 

l = 1  
m I , m ;  . . . .  , m k m l  ! 

\ l /  

where nh ,  m2 . . . . .  mk represent a numerical set of k integers satisfying 

l nh  + 2 m 2  + . . . + k m  k = k .  (7) 

Substituting the results of eqs. (2) and (3) into eq. (6), one readily obtains the follow- 
ing formulas in terms of molecular fragments: 

a2 = - [2] 

a4 = 2-x([2] 2 - [ 2 ]  - 2 [ 3 ] ) - 2 [ 4 ]  

a6 = - 6 - i ( [ 2 ]  3 -  [2] 2 +6[2] [3] +2[2]  +1213] +6[4] +12131])  

+214]  [2] - 8 1 4 ]  - 214-1] - 2 1 6 ]  

as = 24-x([2]  4 - [2] 3 - 1212] 2 [3] + 1112] 2 +60[2]  [3] +24[2]  [4] +48[2]  [31]" 

- 6 [ 2 ]  + 121312 _ 84[3] -9614]  -216131]  -2415]  - 4 8 1 4 1 ] )  

+214]  2 - [4]  [2] 2 +914]  [2] +214]  [3] - 3 3 1 4 ]  +2141] [2] 

-1414-1] +216]  [2] - 1216] - 2 1 4 2 ]  - 2 1 4 1 1 ]  -214101]  

- 6 1 4 1 4 ] - 2 1 6 - 1 ] - 2 1 8 ]  

• . .  ( 8 )  

However, the formula becomes complicated and irregular when k i> 10. By means 
of combinatorial analysis (see ref. [14]), it is possible to transform each member of 
eq. (8) into a combination of binomial factors mapping one to one with a set of 
graphs. As usual, these graphs are mult i -component ,  satisfying 

p + 2q = k ,  (9) 
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where p is the number of ring edges (or points) and q is the number of chain edges. 
For example, we have p = 4, q = 1 and therefore k = 6 in common for graphs [4-1 ] 
and [4]  [2], which suggests that they map to certainly two binomial factors of a6, 
respectively. A detailed discussion will be given below. 

4. Evaluation o f  a« 

The nonadjacency number has been well utilized to rationalize the results of 
ak's for acyclic hydrocarbons [14]. This would be certainly extendable to alternants. 
In general, (-1)k/2ak is equal to the number of selections of a set of edges and rings 
separated from one another having k points in total [5]. With this in mind, we should 
consider the acyclic fragments jointly with cyclic ones when evaluating ak's of 
alternants. Let us describe these, one by one: 

a2 is simply equal to the number of edges involved in the graph, as indicated 
in eq. (8). 

There are two nonadjacency species, namely two disjoint edges and a sinne 
4-membered ring, which contribute to a4, as follows: 

where 

The former two binomial numbers 3ointly represent the number of selecting two 
nonadjacent edges and the latter one corresponds to the selection of a single 4- 
membered ring which, in addition, contributes a w e i ß t  equal to 2. The correspondence 
can be extended further to the relationship between each individu~ factor in eq. (10) 
and its specified graph. Indeed, there exactly exists a set of three graphs: G2([2] 2, 
[3],  []-])  satisfying the condition p + 2q = 4 and mapping one- to-one with the 
binomial factors in eq. (10). This suggests each binomial factor in a k equals the number 
of  ways to select its mapping graph, regardless of whether its components are adjoint 
or not in the molecular graph. Parity of the binomial factor is dependent on the 
number of components that the mapping graph involves, as indicated in eq. (10). 

Let us continue with higher members by means of the given argument. 
Accordingly, we can derive a6 by first finding the whole of G3, a graph set in which 
eäch member contains p ring edges and q chain edges satisfying eq. (9), namely 
p + 2q = 6. Then, binomial factors mapping to G3 can readily be written. They are 
given as follows: 
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a6 =-([~]) + ([31]) ([2]?2)_ ([~]) _2([311]) 

+2([~ ]) ([211-4) -2([411]) -2  ([61 ]) 

Ga: [2] 3 , [3] [21, [41, [31], [41 [21, [4-11, [61, 

(11) 

where a6 and Ga are arranged in harmony with each other such that the one-to-one 
correspondence between binomial factors and mapping graphs is obvious. 

Similar procedures can be used to derive as with reference to G4, a graph set 
in which each member satisfies p + 2q = 8. In the result given in eq. (12), as is also 
arranged consistent with the sequence of G4. 

aa == ([a-1 ])} +1([~]) ([2]1- 3 ) - 4  ([41 ])} 

([3111) -2  ([~l)} +2 ([3111) ([211-3) _ ( [~ l ) -2  ([4111) 

+2 ([411]) ([2]1-5) +2 {([~])([2]1-6 ) - ([41ß])} 

+2{([411 ]) ([311-4) -2  ([411])} +41([42] )-([4-114])} -2  ~/[42])1 / - 2  [4-11]1 

-2  ([4-101])-2 ([611]) -2  ([81 ]) (12) 

G4: [2] 4, [3] [2] =, [4] [2], [3] =, [31] [2], [5], [41], [g] [2], [g] [2], [al [31, 

{([24]). ( [~])}-  {([31] ) ( [2]?  2) -4  

//[3]) _ ( [ 4 ] ) - 3  
+ / \ 2  

-2([41]) ( [2]?  4) 

[4-1 :, [4-21, [411], [4-1011, [6-11, [81. 

It seems a little complicated to look at these terms specified by graphs [2] 4, [3] [2] 2, 
[4] [21, [31 2, [g] [2], [4] [3] and [41 2 ,which are algebraic sums rather than sinne 
binomial numbers. As mentioned previ0usly [14], one has to eliminate the trivial 
counts due to partial coincidence of edges or segments when a multi-component 
graph is selected. For example, as we consider the number of selections of [3] 2, we 
should take into account that selections where a pair of fragments [3], being partially 
overlapped by sharing an edge, are equal to 1 and 3 in graphs [4] and [3 1], respectively. 
On the other hand, there are two trivial selections of [3] 2 from graph [4]. Therefore, 
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the binomial factor of [3] 2 given in eq. (12) is a combination of four terms. Other 
cases can be interpreted along similar lines. One interesting fact is that the fragment 
[414 ] does not appear as a binomial factor in aa, because its contribution has been 
included in the selection of species [4]  2 and [6]  [2]. It should be noted that in 
general there exists a weight equal to 2 r+b, for the binomial factor specified by the 
graph involves r rings and b acyclic branch points. 

alo and aa2 have also been computed,  aao is rather lengthy, since the mapping 
set Gs involves 41 members, aa2 becomes complicated because G6 contains 105 
members. Only alo is given in appendix 1. 

5. B e n z e n o i d  h y d r o c a r b o n s  

In principle, ak's with k ~ 12 for benzenoid hydrocarbons (BH) are reduced 
from the general formulas presented above by eliminating terms involving 4- and 8- 
membered rings. For better handling and implementation of these formulas, frag- 
ments conveniently enumerated should be adopted instead of those counted with 
difficulty. Thus, the following three branched species are feasibly introduced for 
simplifying formulas up to aa : 

>_< _~o~_ > ~  
(33 )  (222)  ( 3 3 3 )  

Both (33) and (333) can be directly determined from the skeleton of branch 
points, and (222) depends solely on terminal hexagons. For instance, the branch 
point skeleton has been marked with circles in the following molecule 

and it is straightforward to find (33) = 17, (222) = 5, (333) = 23 in it. In this way, 
a4, a6 and as of BH are formulated in terms oftopological variables and easily handled 
as follows: 

a4(BH) = -~(21212 - 9121 + 6111) (13) 

1 a6(BH ) = --g ([213 - 2 7 [ 2 ]  2 + 1 1 6 1 2 ] ) -  [11(3121 - 1 6 ) -  ( 3 3 ) -  2161 (14) 
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a8 (BH) = ~ ( [ 2 ]  4 - 541213 + 7071212 - 2772121) 

1 
+-i [1](31212 _ 59121 + 9111 + 201) - (33)([2] - 10) 

- (222) - 7(333) + 2161([2]  - 6) - 21611 . (15) 

Recently,  Dias gave a 6 (BH) as well as aa (cata-BH) as follows, where cata-BH means 
cata-condensed BH [13]" 

1 
a6 (BH) = _ ~ ( q 3  _ 27qZ + 146q + 36) - Nc( q - 22) - 170 - 2r6 (16) 

a8 (cata-BH) = 4(q - 8) + 2(q - 1 0 ) ( r  6 - 2) + 5 ( r  6 - 2)no + 176 

- 2 ( n 4  - 2) + ~ (q - 7)(q - 6)(q - 5)(q - 4) 

_soa qi 3 + 22qi 2 - T q  I 3 4  + 2 ,  (17) 

where Nc, q and r 6 are identical to [1],  [2] and [6-], respectively, no is defined as 
the number of  bay regions, nó is the number of  separate bay regions, n4 is the number 
of  terminal hexagons and ql is the number of  inner bonds. These are illustrated in 
fig. 3. 

! 

n O 

, ~ nó 
no , . , ~  

! 

n o 

n o = 7 , n ó  = 4 , n  4 = 4  

Fig. 3. Illustration of no, no and ne. 

One can easily find the equivalence between eqs. (14) and (16) by noticing 
the relation" (33) = no + 5[2] - 6([1] - 1). On the other hand,  the following identi- 
ties äre valid for cata-BHs: 

[1] = 4r  6 + 2, [2] = 5r 6 + 1, (33) = r 6 + no - 1 

(222) = 2n4,  (333) = 3no - nó,  [61] = 4 ( r  6 - 1). (18) 
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Substituting eq. (18) into eq. (15) together with qI -- r6 - 1, equation (17)is readily 
obtained. 

6. C a t a - c o n d e n s e d  b e n z e n o i d  h y d r o c a r b o n s  

The topology of cata-BH is well represented by its characteristic graph [19], 
which is defined by fixing a point in the center of each hexagon and then connecting 
adjacent points. Thus, a tree graph called a characteristic tree (CT) is formed (see 
fig. 4). 

cata-BH CT 

Fig, 4. Cata-BH and its CT graph. 

In order to treat a k's up to k = 12, thirteen CT fragments, together with their 
symbols, are listed in fig. 5. One can easily deduce relations between molecular frag- 
ments (figs. 1 - 2 )  and CT fragments (fig. 5), which have been tabulated in appendix 2. 

o-----o 
[ 2 ' ]  

f4g] 

[ 5 ' ]  a 

o - - - o - - o  

[4  c ] 

~D 
[5 '  b ] 

[3g~ t4' a] 

[4~] [a1'l 

~ V  
[ 5 ' ]  [sä] 

c 

Fig. 5. Diagrams and symbols of CT fragments. 

Based on these, the original ak's are reduced to succinct formulas in terms of CT 
fragments as variables: 



368 I :  Jiang, H. Zhang, Moments and characteristic polynom&ls 

a2(cata-BH) = - ( 5 [ 2 ' ]  + 6) 

a4(cata-BH) = 2-1(2512 ' ]  ~ + 3912'] + 18) 

a6(cata-BH) = - 6 - I ( 1 2 5 1 2 ' ]  a + 13512 ' ]  2 + 10612 ' ]  + 2 4 ) -  [3 ; ]  

a8{ca t a -BH)  = 2 4 - '  (62512 ' ]  4 - 15012'1 a + 7 4 3 [ 2 ' ]  2 - 1 6 8 1 2 ' ] )  + [3 ;1 (512 '1  - 6 )  

-213ä]  - [4 ; ]  

a ,o(cata-BH) = - 2 4  -x (62512 ' ]8  _ 150012']4 + 291512 ' ]a  _ 318012 ' ]2  + 135612 ' ] )  

- 2  -1 [3 ; ]  (2512'] ~ - 81 [2'] + 100) + 2 1 3 ä ] ( 5 1 2 ' ]  - 12) 

+ [4ä]  (5 [2']  - 10) - [ 4 ; ]  - [4'c] - [Sä]  

a,2 ( ca t a -BH)  = 1 4 4  - 1  (3125  [2 ']  6 _ 16875 [2 ']  S + 50975  [2 ']  4 _ 97233 [2'13 

+ 102788[2 ' ]  2 - 4 2 7 8 0 [ 2 ' ] )  + 6 -1 [3 ;  ] (12512 ' ]  3 - 7 6 5 [ 2 ' ]  2 

+ 2092 [2'] - 2103) + 2-* [3 ; ]  2 - [3'a] (25 [2']  2 - 141 [2'] 

4 '  +196)  - 2 - ' [  d ] (2512 ' ]  2 - 12112'] + 186) + [ 4 ; ] ( 5 [ 2 ' ]  - 17) 

[_1 - 1 4 )  + [4"1(512']  - 24) + [56](5 9'  

+214ä]  - 16131'] - [Sä] - [5 ; ]  - [52] . (19) 

In practice,  these formulas are implemented  convenient ly  because CT frag- 
ments  can easily be counted .  For  some qualitative purpose,  let us define the difference 

~ a  k = a k - a ~ ,  (20)  

where a ° is a collection of  terms involving the CT f ragment  [2'] only.  Then we have 

A a  2 

A a  6 

Aa8 

Aalo 

= A a «  = 0 

= - [ 3 ' » ]  

= [3 ;1(512 ' ]  - 6 ) -  213'a] - [4ä] 

= - 2 - '  [ 3 ; ] (2512 ' ]  2 - 81 [2'1 + 100) + 213ä](512 ' ]  - 12) 

+ [4ä] (512 ' ]  - 1 0 ) -  [4 ; ]  - [4'el - [5~] 
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Aan = 6-1([3;1(12512'13 - 76512'12 + 209212'] - 2103) + 213•1 z 

- [3ä] (25  [2']  2 _ 141 [2']  + 196)  - 2 -1  [4ä]  (25  [2'] 2 _ 121 [2'] + 186)  

+ [4~](512'] - 17)+ [46](5[2'  ] - - 2 4 ) +  [5ä](512'] - 14) 

+214ä] - 16131'] - [5ä] - [5'~] - [56] . (21) 

These terms play the role of detemlining the relative stability among a set of isomers 
because for t h e m a  ° 's  are constants. 

In order to discuss the dependence of relative stability on ak's, let us review 
the Coulson formula [20] for total energy 

1 ] l n I H c ( x ) l  
E(G) : -~ x2 dx , (22) 

where H G (x) is a variant of the characteristic polynomial PG(X) in which all the 
coefficients are changed into positive ones, namely, 

HG(X ) = 1 + la2lx 2 + ]a4 lx  4 + . . .  + laNIx N . (23) 

Based on eq. (21), HG (x)is partitioned accordingly into two parts: 

H G(x) = H~(x)  + AH G(x) ,  (24) 

where H a ( x )  depends on l a~ I's being equal to one another among the isomers, 
but H G (x) is determined by I Aakrs varying with respect to each individual isomer. 
Both Hä (x) and AH G (x) have the same sign. As a consequence of eqs. (22), (23) 
and (24), one can easily deduce that if isomers G1 and G2 satisfy 

HG, (x) > Ha2 (x) ,  

then they obey 

E(G1 ) > E(G2) 

i.e. G1 is relatively more stable than G~. 
The validity of this result can be further attributed to the unequal rt~le played 

by various fragments. Due to the positive and dominant contribution of species [3~] 
in AHc  (x), it plays the decisive role of stabilization. In the case where isomers have 
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equal [3 ; ] ,  species [3ä] and [4ä] become decisive, inducing the second effect of 
destabilization. Similar computations reveal that species [4;], [4;] and [5ä] play 
the role of stabilization in the third order, while [4ä], [31'], [5ä], [5;] and [5c] 
play the role of destabilization in the fourth order. 

The above analysis stimulated us to determine the sequence of relative stability 
for a set of isomers by comparing the number of CT fragments one by one. We now 
illustrate the procedure by analyzing two series of isomers. 

1. CATA-BHs WITH FOUR HEXAGONS 

In total, there are five members of this isomer set, displayed in fig. 6. Their 
CT fragments have been counted and listed in table 1, together with Kekulé counts 
and total Hückel energy. 

I II 

Fig. 6. Cata-BH isomers with four hexagons, 

Table 1 

I II III IV V 

[3g] 0 1 2 2 3 

[3äl 2 1 0 0 0 
[4äl 0 0 0 1 0 
K(G) 5 7 8 8 9 

E(G) 24.931 25.101 25.192 25.187 25.274 

Obviously, the counts listed in the first row of table 1 induces the following sequence: 

V > I V ,  III 2>II > I ,  

in which isomers III and IV can not be discriminated since they have equal [3 ; ] .  In 
addition, on examining the second and third rows one obtains 
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III > IV 

because there are less [4~] in III. Therefore, the whole sequence is determined com- 
pletely in agreement with the sequence of  E(G) and better than that of K(G). 

2. CATA-BH ISOMERS CONSISTING OF FIVE HEXAGONS 

There are twelve members in this isomer set, presented in fig. 7. The number 
of their CT fragments are tabulated in table 2, together with E(G) and K(G). From 

I II III 

IV V 

VII VIII IX 

X XI ZII 

Fig. 7. Diagrams of cata-BHs with five hexagons. 

[3~], the sequence of  relative stability is roughly divided into five groups, as indicated 
in the first row. On considering [3'a] and [4~], the third and fourth groups are dis° 

criminated as follows: 



372 Y. Jiang, H. Zhang, Moments and characteristic polynomials 

4D 

:> 

:> 

> 

OX 

en 

o% ,-~ 0 e,~ 0 0 0 ,"~ 0 0 0 O%_~ ~ .  

O% 

O% 
O% 0 Cq C) 0 ,'-t 0 CD C) 0 CD ~ ~ 

O% 

rt'% 

0"~ 0 ,-~ 0 ,-"t 0 C) C~ C/) C.D ,-t ~.~ OCt. 

o% o o o o o o o o o o o%.~_.~ oc"c~C ~. 

o% 
'~ c6 

('~ ~ CD cq 0 0 C:~ C) 0 0 CD ~ 00 
c~ 
o% 

o% 

¢.e) 

o% 

¢..q 

0 
o% 

0 



Y. Jiang, H. Zhang, Moments and characteristic polynomials 373 

VII < VI, V, IV X < XI < IX < VIII. 

Furthermore, by means of comparing [4;1, [4c] and [5öl, we have 

I I <  III I V < V ,  V I ,  

and by continuously comparing [5'a], we obtain 

V <  V I .  

Therefore ,  the final result is 

I <  I I <  I I I <  V I I <  I V <  V <  V I <  X <  X I <  I X <  V I I I <  XII ,  

which agrees well with E(G) and much better than that of K(G). 
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A p p e n d ~  2 

RELATIONS BETWEEN CT F R A G M E N T S  AND MOLECULAR FRAGMENTS 

[1] = 412'1 + 6  [61 = [2'] +1 
[2] = 512'1 +6 [61] = 412'] 
[3] = 8[2'] +6 [g2] = 4[2'] +2[3;] 
[4] = 1212'] + 6 + [ 3 ; ]  [gl l ]  = 2[2'] +[3;]  
[31] = 2[2'] [6101] = 213ä] +2[3;] 
[5] = 1612'] +6+213ä] +4[3;]  +[46] [B-1001] = 213ä] +[3~,] 
[41] = 8[2'] +2[3;] [1öl = [2'] 
[6] = 20[2'] +6+813ä] +9[3;] +[4;]  [g31] = 4[2'] +413ä] +4[3;] 

+ [4"] +414ä] + [56] +2[46] 
[51] = 812'] +413ä] +6[3;] +2[46] [632] = 2[3;] 
[501] = 1012'] +6[3;]  + [46] [g2i] = 4[2'] +4[3;] +2[46] 
[411] = [2'] + [3;] [6-201] = 4[30] +4[3;]  + [4;] 
[7] = 1812'] +1613'ù] +1613;] +214ä] +2[46] +214ä] 

+5[4;] +6[46] +8[46] + [5ä] [g2001] = 413ä] +2[3;] 
+ + [5;] + [56] 415d] + [4;] +214'«] 

9 ' [61] = 8[2'] +,1_[3~] +1013;] +2[4;] [6111] = 2[3;,] 
+2[46] +6[46] +2[56] [61101] = 413ä] +213;] +6131'] 

[601] = 2012'] +1213ä] +2213;] +[4;]  [610101]= 2131'] 
+2[46] +10146] +2[56] [616] = [2'] 

[511] = 4[2'] +813'b] +214ä] [i-61] = 413ä] +4[3;] 
[5101]= '213ä] +2[3;]  + [46] 
[502] = 4[2'] +413;,] +214ä] 

Other molecular fragments are all equal to zero, and 

[31'] = [3;] + [3;] - [2'] +1 ([2'] e: 0). 

Therefore, for cata-BH, eleven eT fragments are enough to express uk and ak for 
k G  12. 


